3.6.59 \(\int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\) [559]

3.6.59.1 Optimal result
3.6.59.2 Mathematica [A] (verified)
3.6.59.3 Rubi [A] (verified)
3.6.59.4 Maple [B] (verified)
3.6.59.5 Fricas [B] (verification not implemented)
3.6.59.6 Sympy [F]
3.6.59.7 Maxima [F(-2)]
3.6.59.8 Giac [F]
3.6.59.9 Mupad [F(-1)]

3.6.59.1 Optimal result

Integrand size = 38, antiderivative size = 168 \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{3/2} d}+\frac {A+i B}{3 d \sqrt {\cot (c+d x)} (a+i a \tan (c+d x))^{3/2}}+\frac {7 A+i B}{6 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

output
(1/4-1/4*I)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+ 
c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/a^(3/2)/d+1/6*(7*A+I*B)/a/d/c 
ot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/3*(A+I*B)/d/cot(d*x+c)^(1/2)/(a 
+I*a*tan(d*x+c))^(3/2)
 
3.6.59.2 Mathematica [A] (verified)

Time = 5.06 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.87 \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {\frac {3 \sqrt {2} (A-i B) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {i a \tan (c+d x)}}+\frac {6 (-3 i A+B)+2 (7 A+i B) \tan (c+d x)}{(-i+\tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}}{12 a d \sqrt {\cot (c+d x)}} \]

input
Integrate[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x]) 
^(3/2),x]
 
output
((3*Sqrt[2]*(A - I*B)*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I* 
a*Tan[c + d*x]]])/Sqrt[I*a*Tan[c + d*x]] + (6*((-3*I)*A + B) + 2*(7*A + I* 
B)*Tan[c + d*x])/((-I + Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]]))/(12*a*d 
*Sqrt[Cot[c + d*x]])
 
3.6.59.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 4729, 3042, 4079, 27, 3042, 4079, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\sqrt {\tan (c+d x)} (i \tan (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 4079

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {a (5 A-i B)-2 a (i A-B) \tan (c+d x)}{2 \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}dx}{3 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {a (5 A-i B)-2 a (i A-B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}dx}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {a (5 A-i B)-2 a (i A-B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}dx}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4079

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\int \frac {3 a^2 (A-i B) \sqrt {i \tan (c+d x) a+a}}{2 \sqrt {\tan (c+d x)}}dx}{a^2}+\frac {a (7 A+i B) \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {3}{2} (A-i B) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+\frac {a (7 A+i B) \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {3}{2} (A-i B) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx+\frac {a (7 A+i B) \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {a (7 A+i B) \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {3 i a^2 (A-i B) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {\left (\frac {3}{2}-\frac {3 i}{2}\right ) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a (7 A+i B) \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}}{6 a^2}+\frac {(A+i B) \sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}\right )\)

input
Int[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2) 
,x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((A + I*B)*Sqrt[Tan[c + d*x]])/(3*d 
*(a + I*a*Tan[c + d*x])^(3/2)) + (((3/2 - (3*I)/2)*Sqrt[a]*(A - I*B)*ArcTa 
nh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ( 
a*(7*A + I*B)*Sqrt[Tan[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]]))/(6*a^2))
 

3.6.59.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.6.59.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 875 vs. \(2 (134 ) = 268\).

Time = 0.57 (sec) , antiderivative size = 876, normalized size of antiderivative = 5.21

method result size
derivativedivides \(\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i A \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-9 i B \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 B \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-9 i A \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+28 i A \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+9 A \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 i B \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a +16 i B \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-9 B \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-4 B \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-36 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-3 A \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a +64 A \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+12 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{3}}\) \(876\)
default \(\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i A \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-9 i B \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 B \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-9 i A \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+28 i A \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+9 A \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )^{2}+3 i B \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a +16 i B \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-9 B \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-4 B \sqrt {-i a}\, \tan \left (d x +c \right )^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-36 i A \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-3 A \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a +64 A \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+12 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{3}}\) \(876\)

input
int(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x,method=_R 
ETURNVERBOSE)
 
output
1/24/d*(1/tan(d*x+c))^(1/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*(3*I*A*l 
n(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a* 
tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3-9*I*B*ln(-(-2*2^(1/2)*( 
-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan 
(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2+3*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2 
)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I) 
)*a*tan(d*x+c)^3-9*I*A*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan 
(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)+2 
8*I*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+9*A* 
ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a 
*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2+3*I*B*ln(-(-2*2^(1/2)* 
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(ta 
n(d*x+c)+I))*2^(1/2)*a+16*I*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a) 
^(1/2)*tan(d*x+c)-9*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*( 
1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-4* 
B*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-36*I*A*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-3*A*ln(-(-2*2^(1/2)*(-I* 
a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d* 
x+c)+I))*2^(1/2)*a+64*A*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x 
+c)))^(1/2)+12*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a^...
 
3.6.59.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 463 vs. \(2 (126) = 252\).

Time = 0.26 (sec) , antiderivative size = 463, normalized size of antiderivative = 2.76 \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-\frac {4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} + {\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{3} d^{2}}} - {\left (A - i \, B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - \sqrt {2} {\left (2 \, {\left (4 i \, A - B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} - {\left (7 i \, A - B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A + B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

input
integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, al 
gorithm="fricas")
 
output
1/12*(3*sqrt(1/2)*a^2*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^3*d^2))*e^(3*I*d* 
x + 3*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a^2*d*e^(2*I*d*x + 2*I*c) - a^2*d)*s 
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I* 
d*x + 2*I*c) - 1))*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^3*d^2)) + (A - I*B)*a* 
e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) - 3*sqrt(1/2)*a^2*d*sqrt((-I* 
A^2 - 2*A*B + I*B^2)/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(4*(sqrt(2)*sqrt(1/ 
2)*(a^2*d*e^(2*I*d*x + 2*I*c) - a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s 
qrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt((-I*A^2 - 
2*A*B + I*B^2)/(a^3*d^2)) - (A - I*B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/ 
(I*A + B)) - sqrt(2)*(2*(4*I*A - B)*e^(4*I*d*x + 4*I*c) - (7*I*A - B)*e^(2 
*I*d*x + 2*I*c) - I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2* 
I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-3*I*d*x - 3*I*c)/(a^2* 
d)
 
3.6.59.6 Sympy [F]

\[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cot(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(3/2),x)
 
output
Integral((A + B*tan(c + d*x))*sqrt(cot(c + d*x))/(I*a*(tan(c + d*x) - I))* 
*(3/2), x)
 
3.6.59.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, al 
gorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.6.59.8 Giac [F]

\[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {\cot \left (d x + c\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, al 
gorithm="giac")
 
output
integrate((B*tan(d*x + c) + A)*sqrt(cot(d*x + c))/(I*a*tan(d*x + c) + a)^( 
3/2), x)
 
3.6.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

input
int((cot(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(3/2 
),x)
 
output
int((cot(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(3/2 
), x)